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Agenda

● What is Kubernetes

● Kubernetes Architecture

● Configuration and Cluster Setup

● Demo 
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DOCKER PROS AND CONS

● Pros
● Ease of use, makes Linux 

containers consumable
● Very easy to create and 

work with derivative 
images

● Fast boot on containers

● Cons
● Host centric solution, not 

aware of anything else
● Cannot handle networking 

between containers on 
separate hosts

● No higher level provisioning 
to connect related 
containers

Kubernetes is not limited to Docker, 
support for AppC based containers 
(like rkt) and other application 
containers is coming (*).

(*) https://xkcd.com/927/
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What is Kubernetes?

● A highly collaborative open source project 
originally conceived by Google

● Google has 10+ years experience w/ containerized apps

● Start, stop, update, and manage a cluster of 
machines running containers in a consistent and 
maintainable way.

● Sometimes called:
● kube
● k8s (that's 'k' + 8 letters + 's')
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WHAT IS KUBERNETES
● Kubernetes is a container cluster manager
● Manages containerized applications in a clustered 
environment
● It provides discovery across the cluster

C1 C2

Pod 1 Pod 2

C3

Kubelet ● Kubelet (daemon on the worker 
node)

● Pods (collection of containers)
● Services (discovery mechanism 

between pods)
● Replication Controllers (replicated 

and monitored pods)
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What is Kubernetes?

● Particularly suited for horizontally scaleable, 
stateless, or 'microservices' application 
architectures.

● Does not mean others will not work or are ignored

● Additional functionality to make containers 
easier to use in a cluster (reachability and 
discovery).

● Kubernetes does NOT and will not expose all of 
the 'features' of the docker command line.
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Kubernetes Key Words

● Master

● Node/Minion

● Pod

● Replication Controller
● Service

● Label

● Namespace
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Master

● Typically consists of:
● kube-apiserver
● kube-scheduler
● kube-controller-manager
● etcd

● Might contain:
● a network management utility
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Node - Minion

● Typically consists of:
● kubelet
● kube-proxy

● Might contain:
● a network management utility
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Architecture



11

Pod

● Single schedulable unit of work
● Can not move between machines

● One or more containers
● Shared network namespace

● Every pod gets an unique IP
● Assigned by the container engine, not kube!

● Metadata about the container(s)

● Env vars – configuration for the container
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Pod
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Pod – Example JSON

{ "apiVersion": "v1beta1", "id": "apache", "kind": "Pod", "namespace": "default",

"labels": { "name": "apache" },

 "desiredState": { "manifest": {

       "version": "v1beta1", "id": "apache", "volumes": null,

       "containers": [{ "name": "my-fedora-apache", "image": 
"fedora/apache",

               "ports": [{ "containerPort": 80, "hostPort": 80, "protocol": "TCP" 
}],

}],

       "restartPolicy": {" always": {} }

    }, },

}
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Replication Controller

● Consists of
● Pod template
● Count
● Label Selector

● Kube will try to keep $count copies of pods 
matching the label selector running

● If too few copies are running the replication 
controller will start a new pod somewhere in the 
cluster



15

Replication Controller
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Services

● Most every pod/replication controller will need a 
service.  What's the point of a pod that doesn't 
provide some sort of service/useful work?

● How 'stuff' finds pods which could be anywhere?
● Containers are started and stopped dynamically by 

kube, thus always changing IP addresses

● Define:
● What port in the container
● Labels on pods which should respond to this type of 

request
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Services



18

Labels

● List of key=value pairs

● Attached to all objects

● Currently used in 2 main places
● Matching pods to replication controllers
● Matching pods to services

● Objects can be queried from the API server by 
label
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Services and Labels
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Namespace

● Attached to every object

● Pods in ns1 will not get service variable from 
ns2

● Users with permission to CRUD (create, read, 
update, delete) objects in ns1 may not have 
permissions to CRUD object in ns2

● The network is not segregated.

● Some people consider using a namespace per 
application.  Some say a namespace per team 
or location.
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Networking Setup

● Networking is a docker problem – not kube
● Kube makes those problems apparent!
● If any two docker containers on any two hosts can talk 

over IP, kube will just work.

● Docker looks so easy
● 2 containers on one host can easily talk.
● How to get to those containers from outside?
● How to get to from one container on one host to a 

container on another?

● Networking is really hard!
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Networking Docker Out Of The Box
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Networking Setup – Flannel

● Flannel
● Super super easy configuration
● Can create a vxlan overlay network
● Can configure docker to launch pods in this overlay
● Pods just work!

● There are many other solutions.
● This one is easy.
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Networking with an overlay network
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Ressources

● Kubernetes

http://kubernetes.io/

● Project Atomic

http://www.projectatomic.io/

For questions please email 

Thorsten Scherf <tscherf@redhat.com>

Credits go to Eric Paris for his excellent slidedeck.

http://kubernetes.io/
http://www.projectatomic.io/
mailto:tscherf@redhat.com
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