

Kubernetes

Thorsten Scherf
Red Hat

SLAC 2015, Berlin

2

Agenda

● What is Kubernetes

● Kubernetes Architecture

● Configuration and Cluster Setup

● Demo

3

DOCKER PROS AND CONS

● Pros
● Ease of use, makes Linux

containers consumable
● Very easy to create and

work with derivative
images

● Fast boot on containers

● Cons
● Host centric solution, not

aware of anything else
● Cannot handle networking

between containers on
separate hosts

● No higher level provisioning
to connect related
containers

Kubernetes is not limited to Docker,
support for AppC based containers
(like rkt) and other application
containers is coming (*).

(*) https://xkcd.com/927/

4

What is Kubernetes?

● A highly collaborative open source project
originally conceived by Google

● Google has 10+ years experience w/ containerized apps

● Start, stop, update, and manage a cluster of
machines running containers in a consistent and
maintainable way.

● Sometimes called:
● kube
● k8s (that's 'k' + 8 letters + 's')

5

WHAT IS KUBERNETES
● Kubernetes is a container cluster manager
● Manages containerized applications in a clustered
environment
● It provides discovery across the cluster

C1 C2

Pod 1 Pod 2

C3

Kubelet ● Kubelet (daemon on the worker
node)

● Pods (collection of containers)
● Services (discovery mechanism

between pods)
● Replication Controllers (replicated

and monitored pods)

6

What is Kubernetes?

● Particularly suited for horizontally scaleable,
stateless, or 'microservices' application
architectures.

● Does not mean others will not work or are ignored

● Additional functionality to make containers
easier to use in a cluster (reachability and
discovery).

● Kubernetes does NOT and will not expose all of
the 'features' of the docker command line.

7

Kubernetes Key Words

● Master

● Node/Minion

● Pod

● Replication Controller
● Service

● Label

● Namespace

8

Master

● Typically consists of:
● kube-apiserver
● kube-scheduler
● kube-controller-manager
● etcd

● Might contain:
● a network management utility

9

Node - Minion

● Typically consists of:
● kubelet
● kube-proxy

● Might contain:
● a network management utility

10

Architecture

11

Pod

● Single schedulable unit of work
● Can not move between machines

● One or more containers
● Shared network namespace

● Every pod gets an unique IP
● Assigned by the container engine, not kube!

● Metadata about the container(s)

● Env vars – configuration for the container

12

Pod

13

Pod – Example JSON

{ "apiVersion": "v1beta1", "id": "apache", "kind": "Pod", "namespace": "default",

"labels": { "name": "apache" },

 "desiredState": { "manifest": {

 "version": "v1beta1", "id": "apache", "volumes": null,

 "containers": [{ "name": "my-fedora-apache", "image":
"fedora/apache",

 "ports": [{ "containerPort": 80, "hostPort": 80, "protocol": "TCP"
}],

}],

 "restartPolicy": {" always": {} }

 }, },

}

14

Replication Controller

● Consists of
● Pod template
● Count
● Label Selector

● Kube will try to keep $count copies of pods
matching the label selector running

● If too few copies are running the replication
controller will start a new pod somewhere in the
cluster

15

Replication Controller

16

Services

● Most every pod/replication controller will need a
service. What's the point of a pod that doesn't
provide some sort of service/useful work?

● How 'stuff' finds pods which could be anywhere?
● Containers are started and stopped dynamically by

kube, thus always changing IP addresses

● Define:
● What port in the container
● Labels on pods which should respond to this type of

request

17

Services

18

Labels

● List of key=value pairs

● Attached to all objects

● Currently used in 2 main places
● Matching pods to replication controllers
● Matching pods to services

● Objects can be queried from the API server by
label

19

Services and Labels

20

Namespace

● Attached to every object

● Pods in ns1 will not get service variable from
ns2

● Users with permission to CRUD (create, read,
update, delete) objects in ns1 may not have
permissions to CRUD object in ns2

● The network is not segregated.

● Some people consider using a namespace per
application. Some say a namespace per team
or location.

21

Networking Setup

● Networking is a docker problem – not kube
● Kube makes those problems apparent!
● If any two docker containers on any two hosts can talk

over IP, kube will just work.

● Docker looks so easy
● 2 containers on one host can easily talk.
● How to get to those containers from outside?
● How to get to from one container on one host to a

container on another?

● Networking is really hard!

22

Networking Docker Out Of The Box

23

Networking Setup – Flannel

● Flannel
● Super super easy configuration
● Can create a vxlan overlay network
● Can configure docker to launch pods in this overlay
● Pods just work!

● There are many other solutions.
● This one is easy.

24

Networking with an overlay network

25

Ressources

● Kubernetes

http://kubernetes.io/

● Project Atomic

http://www.projectatomic.io/

For questions please email

Thorsten Scherf <tscherf@redhat.com>

Credits go to Eric Paris for his excellent slidedeck.

http://kubernetes.io/
http://www.projectatomic.io/
mailto:tscherf@redhat.com

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25

