
POSTGRESQL:
5 MINUTES PERFORMANCE DIAGNOSES

H A N S - J Ü R G E N S C H Ö N I G

CYBERTEC Worldwide

AUSTRIA

Wiener Neustadt

ESTONIA

Tallinn

URUGUAY

Montevideo

SWITZERLAND

Zurich

DATA
SERVICES

 Artificial Intelligence

 Machine learning

 BIG DATA

 Business Intelligence

 Data Mining

 Etc.

office@cy b e r tec .at

ABOUT
CYBERTEC

PostgreSQL & Zukunftstechnologien

(z.B. Machine Learning, Big Data etc)

Inhouse Entwicklungen

Inhabergeführt seit dem Jahr 2000

Internationales Entwicklerteam

INSPIRATION

INSPIRED BY
REAL WORLD EXAMPLE

 This content is inspired by a database I have seen last year

MASSIVE DRAMA:

 340 billion rows

Oracle reached its limit

People tried to solve things with hardware

 They will fail (after spending cash on Exadata) as data will grow

WHAT THEY DID

A GUIDELINE to FAILURE:

 Joining up to 14 tables

No pre-aggregation

No thoughts on what to query how

WHAT YOU SHOULD LEARN

Small data sets:
Do basically what you want
Hardware is gonna bail you out

Large data sets:
Stupid queries are gonna kill your
 The more data you have, the more you have to think

 There is no “magic parameter”
 There will NEVER BE ONE !

FAVOR REAL DATA OVER
HALLUCINATIONS

WHAT HAPPENS
IN THE REAL WORLD

 “We need a bigger server”

 “If we add 10 more disks, it will be faster”

 “More RAM will surely fix things”

DIAGNOSIS

 IDEAS:

Get real data and MEASURE

Drawing load graphs is (usually pointless)

Drawing more images does not fix queries

ETERNAL TRUTH:

QUERIES cause load (not some shitty load graph)

HOW CAN WE
EXTRACT REAL DATA

Logfiles are kinda nice

Usually large

Need processing

pg_stat_statements is a MUST

Contains all you need to fix 85% of all problems

WHAT WE GOT HERE

test=# \d pg_stat_statements
View "public.pg_stat_statements"

Column | Type
---------------------+-----------------
Userid | oid
dbid | oid
queryid | bigint
query | text
calls | bigint
total_time | double precision

DISTRIBUTIONS DO MATTER

min_time | double precision
max_time | double precision
mean_time | double precision
stddev_time | double precision
rows | bigint

CATCHING IS
RELATED TO QUERIES

shared_blks_hit | bigint
shared_blks_read | bigint
shared_blks_dirtied | bigint
shared_blks_written | bigint
local_blks_hit | bigint
local_blks_read | bigint
local_blks_dirtied | bigint
local_blks_written | bigint

I/O DOES MATTER
(IF THERE IS ANY)

temp_blks_read | bigint
temp_blks_written | bigint
blk_read_time | double precision
blk_write_time | double precision

WORKING MIRACLES

SELECT substring(query, 1, 50) AS short_query,
round(total_time::numeric, 2) AS total_time,
calls, round(mean_time::numeric, 2) AS mean,
round((100 * total_time / sum(total_time::numeric)

OVER ())::numeric, 2) AS percentage_overall
FROM pg_stat_statements
ORDER BY total_time DESC
LIMIT 20;

IT GIVES SOMETHING LIKE THIS

short_query | total_time | calls | mean | per..
-----------------+------------+--------+--------+--------
UPDATE pgb.... | 126973.96 | 115832 | 1.10 | 55.64
UPDATE pgb.... | 96855.34 | 115832 | 0.84 | 42.44
UPDATE pgbenc.. | 2427.00 | 115832 | 0.02 | 1.06
SELECT abalan.. | 761.74 | 115832 | 0.01 | 0.33
INSERT INTO p.. | 674.12 | 115832 | 0.01 | 0.30
copy pgbench_.. | 201.51 | 1 | 201.51 | 0.09
CREATE EXTENS.. | 47.02 | 1 | 47.02 | 0.02
vacuum analyz.. | 44.25 | 1 | 44.25 | 0.02
alter table p.. | 37.82 | 1 | 37.82 | 0.02

INDEXING – THE
FORGOTTEN WISDOM

WHAT INDEXING IS
REALLY ALL ABOUT

Missing indexes can fix 70%+ of all performance problems

 Thank you, users, for funding my winter holiday ;)

HOW CAN WE TRACK
DOWN MISSING INDEXES?

We look for . . .

expensive scans

happening often

Do you really want to read 10 million rows 10 million times?

A MAGIC QUERY

SELECT schemaname, relname, seq_scan, seq_tup_read,
idx_scan, seq_tup_read / seq_scan AS avg

FROM pg_stat_user_tables
WHERE seq_scan > 0
ORDER BY seq_tup_read DESC;

OBSERVATIONS

Usually those tables listed here will show up in

pg_stat_statements too

You will usually see:

Potential missing indexes

Pointless operations

POTENTIAL SOLUTIONS

AGGREGATES AND JOINS (1)

test=# CREATE TABLE t_gender (id int, name text);
CREATE TABLE
test=# INSERT INTO t_gender

VALUES (1, ’male’), (2, ’female’);
INSERT 0 2

AGGREGATES AND JOINS (2)

test=# CREATE TABLE t_person (
id serial,
gender int,
data char(40)

);
CREATE TABLE

AGGREGATES AND JOINS (3)

test=# INSERT INTO t_person (gender, data)
SELECT x % 2 + 1, ’data’
FROM generate_series(1, 5000000) AS x;

INSERT 0 5000000

SIMPLE ANALYSIS

test=# SELECT name, count(*)
FROM t_gender AS a, t_person AS b
WHERE a.id = b.gender
GROUP BY 1;

name | count
--------+---------
female | 2500000
male | 2500000
(2 rows)
Time: 961.034 ms

CAN WE SPEED IT UP?

Does anybody see a way to make this faster?

 The answer is “deep” inside the planner

LET US TRY THIS ONE

test=# WITH x AS
(

SELECT gender, count(*) AS res
FROM t_person AS a
GROUP BY 1

)
SELECT name, res
FROM x, t_gender AS y
WHERE x.gender = y.id;
... <same result> ...
Time: 526.472 ms

HOW DID IT HAPPEN?

We do not understand . . .

 It must be a miracle ;)

UNDERSTANDING THE
PLANNER (1)

 The answer is deep inside the planner

Let us see what happens if we use just one CPU core:

test=# SET max_parallel_workers_per_gather TO 0;
SET

UNDERSTANDING THE
PLANNER (2)

explain SELECT name, count(*)
FROM t_gender AS a, t_person AS b
WHERE a.id = b.gender GROUP BY 1;

QUERY PLAN

HashAggregate ...
Group Key: a.name
-> Hash Join (rows=5000034)

Hash Cond: (b.gender = a.id)
-> Seq Scan on t_person b (rows=5000034)
-> Hash (cost=1.02..1.02 rows=2 width=10)

-> Seq Scan on t_gender a (rows=2)

UNDERSTANDING THE
PLANNER (3)

 The join is performed BEFORE the aggregation

Millions of lookups

 This causes the change in performance

UNDERSTANDING THE
PLANNER (4)

test=# explain WITH x AS
(

SELECT gender, count(*) AS res
FROM t_person AS a
GROUP BY 1

)
SELECT name, res
FROM x, t_gender AS y
WHERE x.gender = y.id;

UNDERSTANDING THE
PLANNER (5)

QUERY PLAN

Hash Join (rows=2)
Hash Cond: (y.id = x.gender)
CTE x
-> HashAggregate (rows=2)

Group Key: a.gender
-> Seq Scan on t_person a
(rows=5000034)

-> Seq Scan on t_gender y (rows=2)
-> Hash (rows=2)

-> CTE Scan on x (rows=2)

LESSONS LEARNED

Difference is irrelevant if your amount of data is very small

Small things can make a difference

Good news: An in-core fix is on the way for (maybe) PostgreSQL 12.0?

ONE MORE CLASSICAL
EXAMPLE

Processing A LOT of data

Suppose we have 20 years worth of data

 1 billion rows per year

SELECT sensor, count(temp)
FROM t_sensor
WHERE t BETWEEN ’2014-01-01’

AND ’2014-12-31’
GROUP BY sensor;

OBSERVATIONS

Reading 1 billion out of 20 billion rows can be slow

A classical btree might be a nightmare too

A lot of random I/O

Size is a round 20.000.000.000 * 25 bytes

We can do A LOT better

IDEAS

Partition data by year

A sequential scan on 1 billion rows is A LOT better than using a

btree

 The planner will automatically kick out unnecessary partitions

Alternatively:

Use brin indexes (Block range indexes)

AN EXAMPLE (1)

test=# CREATE INDEX idx_btree ON t_person (id);
CREATE INDEX
Time: 1542.177 ms (00:01.542)

test=# CREATE INDEX idx_brin ON t_person USING brin(id);
CREATE INDEX
Time: 721.838 ms

AN EXAMPLE (1)

test=# \di+
List of relations

Name | Type | Table | Size
-----------+-------+-----------+-------
idx_brin | index | t_person | 48 kB
idx_btree | index | t_person | 107 MB
(2 rows)

BRIN AT WORK

 Takes 128 blocks
Stores min + max value of the block

Super small (2000 x smaller than btrees)

Only works well when there is correlation

DOING MANY THINGS
AT ONCE

PASSING OVER DATA
TOO OFTEN

One source of trouble is to read data too often

Some ideas:

Use grouping sets and partial aggregates

Use synchronous sequential scans

Use pre-aggregation

GROUPING SETS:
DOING MORE AT ONCE

Preparing some data
test=# ALTER TABLE t_person

ADD COLUMN age int DEFAULT random()*100;
ALTER TABLE

test=# SELECT * FROM t_person LIMIT 4;
id | gender | data | age

---------+--------+----------+-----
5000001 | 2 | data | 78
5000002 | 1 | data | 26
5000003 | 2 | data | 33
5000004 | 1 | data | 55

ADDING PARTIAL
AGGREGATES AND ROLLUP
test=# SELECT name,

count(*) AS everybody,
count(*) FILTER (WHERE age < 50) AS young,
count(*) FILTER (WHERE age >= 50) AS censored

FROM t_gender AS a, t_person AS b
WHERE a.id = b.gender
GROUP BY ROLLUP(1)
ORDER BY 1;
name | everybody | young | censored

--------+-----------+---------+----------
female | 2500000 | 1238156 | 1261844
male | 2500000 | 1238403 | 1261597

| 5000000 | 2476559 | 2523441

CEO
Hans-Jürgen
Schönig
M A I L hs@cybertec.at

P H O N E +43 2622 930 22-2

W E B www.cybertec-postgresql.com

	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Foliennummer 25
	Foliennummer 26
	Foliennummer 27
	Foliennummer 28
	Foliennummer 29
	Foliennummer 30
	Foliennummer 31
	Foliennummer 32
	Foliennummer 33
	Foliennummer 34
	Foliennummer 35
	Foliennummer 36
	Foliennummer 37
	Foliennummer 38
	Foliennummer 39
	Foliennummer 40
	Foliennummer 41
	Foliennummer 42
	Foliennummer 43
	Foliennummer 44
	Foliennummer 45
	Foliennummer 46
	Foliennummer 47
	Foliennummer 48

